Sp1 Plays a Critical Role in the Transcriptional Activation of the Human Cyclin-dependent Kinase Inhibitor p21 Gene by the p53 Tumor Suppressor Protein*

نویسندگان

  • George Koutsodontis
  • Ioannis Tentes
  • Paraskevi Papakosta
  • Aristidis Moustakas
چکیده

In the present study we present evidence for the critical role of Sp1 in the mechanism of transactivation of the human cell cycle inhibitor p21 (p21) gene promoter by the tumor suppressor p53 protein. We found that the distal p53-binding site of the p21 promoter acts as an enhancer on the homologous or heterologous promoters in hepatoma HepG2 cells. In transfection experiments, p53 transactivated the p21 promoter in HaCaT cells that express Sp1 but have a mutated p53 form. In contrast, p53 could not transactivate the p21 promoter in the Drosophila embryo-derived Schneider’s SL2 cells that lack endogenous Sp1 or related factors. Cotransfection of SL2 cells with p53 and Sp1 resulted in a synergistic transactivation of the p21 promoter. Synergistic transactivation was greatly decreased in SL2 cells and HaCaT cells by mutations in either the p53-binding site or in the 282/277 Sp1-binding site indicating functional cooperation between Sp1 and p53 in the transactivation of the p21 promoter. Synergistic transactivation was also decreased by mutations in the transactivation domain of p53. Physical interactions between Sp1 and p53 proteins were established by glutathione S-transferase pull-down and coimmunoprecipitation assays. By using deletion mutants we found that the DNA binding domain of Sp1 is required for its physical interaction with p53. In conclusion, Sp1 must play a critical role in regulating important biological processes controlled by p53 via p21 gene activation such as DNA repair, cell growth, differentiation, and apoptosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy

The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...

متن کامل

The Dual Role Played by p21 May Influence the Apoptotic or Anti-Apoptotic Fate in Cancer

p21 is a cyclin-dependent kinase inhibitor that is activated in response to different stress stimuli and could act as cell cycle suppressor. p21 can bind and inhibit cyclin-dependent kinase/cyclin complexes to mediate growth arrest in G1 and G2 phases. This condition enables DNA repair and suggests that p21 could have a role of tumour suppressor. p21 is one of the transcriptional targets of p53...

متن کامل

The alternative reading frame tumor suppressor inhibits growth through p21-dependent and p21-independent pathways.

The alternative reading frame (ARF) tumor suppressor mediates growth arrest or apoptosis through activation of the p53 tumor suppressor. A prevailing concept is that ARF uses p21Cip1/Waf1, a p53-responsive gene and cyclin-dependent kinase (Cdk) inhibitor, to block cell cycle progression. Using p21 nullizygous cells, we demonstrate that p21 is nonessential for the antiproliferative activity of A...

متن کامل

Ablation of p21waf1cip1 expression enhances the capacity of p53-deficient human tumor cells to repair UVB-induced DNA damage.

During periods of genotoxic stress, the cyclin-dependent kinase inhibitor p21waf1cip1 (hereafter referred to as p21) is transcriptionally up-regulated by the p53 tumor suppressor and subsequently plays a key role in cellular growth arrest. Investigations have also indicated that p21 may regulate nucleotide excision repair, a critical pathway that removes carcinogenic DNA damage induced by UV li...

متن کامل

Synergistic tumor suppression by combined inhibition of telomerase and CDKN1A.

Tumor suppressor p53 plays an important role in mediating growth inhibition upon telomere dysfunction. Here, we show that loss of the p53 target gene cyclin-dependent kinase inhibitor 1A (CDKN1A, also known as p21(WAF1/CIP1)) increases apoptosis induction following telomerase inhibition in a variety of cancer cell lines and mouse xenografts. This effect is highly specific to p21, as loss of oth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001